Skip to main content
Version: 10.0.0

Classifiers

Short description: A document classification algorithm that employs analysis of free text stemming from the abstracts of the publications. The purpose of applying a document classification module is to assign a scientific text to one or more predefined content classes.

Algorithmic details: The algorithm classifies publication's fulltexts using a Bayesian classifier and weighted terms according to an offline training phase. The training has been done using the following taxonomies: arXiv, MeSH (Medical Subject Headings), ACM, and DDC (Dewey Decimal Classification, or Dewey Decimal System).

Parameters: Publication's identifier and fulltext

Limitations: -

Environment: Python, madIS, APSW

References:

  • Giannakopoulos, T., Stamatogiannakis, E., Foufoulas, I., Dimitropoulos, H., Manola, N., Ioannidis, Y. (2014). Content Visualization of Scientific Corpora Using an Extensible Relational Database Implementation. In: Bolikowski, Ł., Casarosa, V., Goodale, P., Houssos, N., Manghi, P., Schirrwagen, J. (eds) Theory and Practice of Digital Libraries -- TPDL 2013 Selected Workshops. TPDL 2013. Communications in Computer and Information Science, vol 416. Springer, Cham. doi:10.1007/978-3-319-08425-1_10

Authority: ATHENA RC License: CC-BY/CC-0 Code: iis/referenceextraction